Aims and objectives of this session
Recent research has revealed several novel targets in prostate cancer. However, a single therapy approach will likely not be efficient in improving patient survival. For this reason, systemic pharmacology approaches have been developed in order to provide a scientific basis for novel therapies. The session will also address key issues of drug delivery in prostate cancer.

Poster viewing of 20 minutes. Presentations will take place on stage. Standard presentations are 2 minutes in length, followed by 2 minutes for discussion. Extended presentations (*) are 3 minutes in length, followed by 3 minutes for discussion.

New approaches to overcome endocrine therapy resistance in prostate cancer
P. Sooriakumaran, London (GB)

Identification and characterization of selective androgen receptor degraders (SARDs) for the treatment of enzalutamide unresponsive and/or resistant prostate cancer

Institutes: 1Gtx Inc, Dept. of Prostate Cancer, Memphis, United States of America, 2University of Tennessee Health Science Center, Dept. of Medicine, Memphis, United States of America, 3University of Tennessee Health Science Center, Dept. of Pharmaceutical Sciences, Memphis, United States of America, 4School of Medicine, Institute of Medical Sciences, Aberdeen, United Kingdom, 5St. Jude's Children's Research Hospital, Dept. of Structural Biology, Memphis, United States of America, 6University of Tennessee Health Science Center, Pharmaceutical Sciences, Memphis, United States of America

Targeting enzalutamide-resistant prostate cancer using the novel androgen receptor inhibitor ODM-201
By: Borgmann H., Ozistanbullu D., Beraldi E., Dalal K., Fazli L., Gleave M.
Institutes: Vancouver Prostate Centre, Dept. of Urology, Vancouver, Canada

Targeting androgen receptor variants by niclosamide overcomes resistance to abiraterone and enzalutamide
By: Liu C., Lou W., Pan C-X., Evans C., Gao A.
Institutes: University of California Davis, Dept. of Urology, Sacramento, United States of America

The STAT3 inhibitor galiellalactone prevents prostate cancer cell induced generation of myeloid derived suppressor cells from monocytes ex vivo
By: Hellsten R.1, Leandersson K.2, Johansson M.3, Bjartell A.1
Institutes: 1Division of Urological Cancers, Dept. of Translational Medicine, Lund University, Malmö, Sweden, 2Cancer Immunology, Dept. of Translational Medicine, Lund University, Malmö, Sweden, 3Glaetone Pharma AB, Helsingborg, Sweden

The multi-kinase inhibitor EC-70124 delivers a double-hit to prostate cancer stem cells interfering with both STAT3 and NF-kB signaling
By: Civenni G.1, Shinde D.1, Zoma M.1, Albino D.1, Costales P.2, Moris F.2, Carbone G.1, Catapano C.1
Institutes: 1IOR Institute of Oncology Research, Tumor Biology and Experimental Therapeutic, Bellinzona, Switzerland, 2Edificio Cientifico Tecnologico, EntreChem, EntreChem, Oviedo, Spain

751

Dopamine hydrochloride relative nanoparticles in the treatment of prostate cancer
By: Zhang C., Zhao X., Lin T., Guo H.
Institutes: Nanjing Drum Tower Hospital, Dept. of Urology, Nanjing, China

752

ALK1Fc suppresses tumor growth by impairing proliferation of human prostate cancer cells in vitro and in vivo
By: Astrologo L.1, Zoni E.1, Karkampouna S.1, Gray P.2, Klima I.1, Goumans M.J.2, Hawinkels L.2, Van Der Pluijm G.3, Ten Dijke P.2, Spahn M.4, Thalmann G.4, Kruithof-De Julio M.1
Institutes: Urology Research Laboratory, Dept. of Clinical Research, Bern, Switzerland, 2Leiden University Medical Center, Dept. of Molecular Cell Biology, Leiden, The Netherlands, 3Leiden University Medical Center, Dept. of Urology, Leiden, The Netherlands, 4University Hospital Bern, Dept. of Urology, Bern, Switzerland

753

A tale of tails: A novel approach to immunotherapy of prostate cancer
By: Galustian C.1, Smolarek D.1, Sakellariou C.1, Elhage O.1, Smith R.1, Dasgupta P.2
Institutes: Kings College London, Dept. of Innate Immunity, London, United Kingdom, 2Kings College London, Dept. of Innate Immunity and the Urology Centre, London, United Kingdom

754

Systems pharmacology and quantitative proteomics for developing targeted triple therapy
Institutes: 1University College Dublin, Systems Biology Ireland, Dublin, Ireland, 2Memorial Sloan-Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences, New York City, United States of America, 3ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland, 4Dana-Farber Cancer Institute, CBio Center At Dana-Farber, Boston, United States of America

755

Transdermal delivery of leuprolide acetate with chitosan microneedles: A promising tool for androgen deprivation therapy
By: Tsai Y-S.1, Chen M-Y.2, Lan S-K.3, Tsai H-T.4, Chen M-C.5, Tzai T-S.6
Institutes: 1National Cheng Kung University Hospital, Dept. of Urology, Tainan, Taiwan, 2Madou SinLau Hospital, Dept. of Urology, Tainan, Taiwan, 3Dalin Tzu-Chi Hospital, Dept. of Urology, Tainan, Taiwan, 4National Cheng-Kung University Hospital, Dept. of Urology, Tainan, Taiwan, 5National Cheng-Kung University, Dept. of Chemical Engineering, Tainan, Taiwan, 6Tainan An-Nan Hospital, Dept. of Urology, Tainan, Taiwan

756

Co-treatment with L-methadone increases the efficacy of cytostatic drugs in prostate cancer cells
By: Stadlbauer B.1, Koziian D.2, Stief C.1, Buchner A.1
Institutes: Ludwig-Maximilians-University Munich, Dept. of Urology, Munich, Germany, 2Sanofi-Aventis GmbH, Research Department, Frankfurt, Germany

757

SEMA3C drives cancer growth and treatment resistance via cognate ligand-independent activation of multiple receptor tyrosine kinases
By: Takeuchi A.1, Masaki S.1, Peacock J.2, Eto M.1, Martin E G.2, Ong C.2
Institutes: 1Graduate School of Medical Sciences, Kyushu University, Dept. of Urology, Fukuoka, Japan, 2University of British Columbia, Vancouver Prostate Centre, Vancouver, Canada